Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/84296
DC FieldValueLanguage
dc.contributor.authorGarcia, M.G.-
dc.contributor.authorde Castro, A.S.-
dc.contributor.authorAlberto, P.-
dc.contributor.authorCastro, L.B.-
dc.date.accessioned2019-01-22T14:47:05Z-
dc.date.available2019-01-22T14:47:05Z-
dc.date.issued2017-04-
dc.identifier.urihttp://hdl.handle.net/10316/84296-
dc.description.abstractNew exact analytical bound-state solutions of the radial Dirac equation in 3 +1 dimensions for two sets of couplings and radial potential functions are obtained via mapping onto the nonrelativistic bound-state solutions of the one-dimensional generalized Morse potential. The eigenfunctions are expressed in terms of generalized Laguerre polynomials, and the eigenenergies are expressed in terms of solutions of equations that can be transformed into polynomial equations. Several analytical results found in the literature, including the Dirac oscillator, are obtained as particular cases of this unified approach.pt
dc.language.isoengpt
dc.rightsopenAccesspt
dc.titleSolutions of the three-dimensional radial Dirac equation from the Schrödinger equation with one-dimensional Morse potentialpt
dc.typearticlept
degois.publication.firstPage2050pt
degois.publication.lastPage2054pt
degois.publication.issue25-26pt
degois.publication.titlePhysics Letters Apt
dc.peerreviewedyespt
dc.identifier.doi10.1016/j.physleta.2017.04.037-
degois.publication.volume381pt
dc.date.embargo2017-04-01*
dc.date.periodoembargo0pt
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.languageiso639-1en-
Appears in Collections:I&D CFis - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
DIRACviaMORSE_VF.pdf187.44 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

3
checked on Jun 25, 2019

WEB OF SCIENCETM
Citations

3
checked on Jun 25, 2019

Page view(s)

17
checked on Aug 13, 2019

Download(s)

9
checked on Aug 13, 2019

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.