Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/81300
Title: Indexação Automática de Imagens na Web: Tendências e Desafios no Contexto Deep Learning
Other Titles: Automatic indexing of web images: trends and challenges in deep learning context
Indexación automática de imágenes en la web: tendencias y desafíos en el contexto deep learning
Authors: Gracioso, Luciana de Souza 
Simionato, Ana Carolina 
Machado, Luís Miguel Oliveira 
Simões, Maria da Graça Melo 
Keywords: deep learning; indexação de imagens; machine learning; recuperação de imagens na web
Issue Date: Aug-2018
Publisher: Universidade de Brasília - UnB
Serial title, monograph or event: Revista Ibero-americana de Ciencia de la Información (RICI)
Volume: 11
Issue: 2
Place of publication or event: Brasília - DF - Brasil
Abstract: O objetivo deste estudo é investigar em que medida as pesquisas na Ciência da Informação (CI) tem aproximado às das técnicas de Deep Learning, sendo relacionadas à representação, descrição e recuperação de imagens na Web, e assim, aferir da mais valia destas pesquisas quando aplicadas aos métodos da área da CI. A partir de uma revisão integrativa de literatura nacional e internacional de modo contextualizado na CI, os documentos recuperados foram analisados conforme os critérios da revisão integrativa, identificando um conjunto de operações que poderiam ser integrados nas metodologias de representação e descrição de imagens desenvolvidas e consolidadas no campo da CI. Conclui-se que ainda há uma lacuna nas pesquisas em CI tanto no âmbito nacional como internacional sobre Deep Learning e que recursos desta nova estrutura de programação podem ser aproximados aos métodos já validados pela área.
The objective of this study is to investigate the extent to which research in Information Science (IS) has approximated those techniques of the Deep Learning, being related to representation, description and retrieval of images on the Web, and thus, to assess the value of these researches when applied to IS methods. From an integrative review of national and international literature contextualized in the IS, the recovered documents were analyzed according to the criteria of the integrative review, identifying a set of operations that could be attached in the methodologies of representation and description of images developed and consolidated in the field of IS. It is concluded that there is still a gap in research of IS area both at national and international level on Deep Learning and that resources of this new programming structure can be approximated to the methods already validated by the area.
El objetivo de este estudio es investigar en qué medida las investigaciones en la Ciencia de la Información (CI) han aproximado a las de las técnicas de Deep Learning, siendo relacionadas la representación, descripción y recuperación de imágenes en la Web, y así, aferir de la plusvalía de estas investigaciones cuando aplicados a los métodos del área de la CI. A partir de una revisión integrativa de la bibliografía nacional e internacional contextualizada en el CI, los documentos recuperados se analizaron de acuerdo con los criterios de la revisión integrativa, identificando un conjunto de operaciones que podrían ser integrado en las metodologías de representación y descripción de imágenes desarrolladas y consolidadas en el campo de CI. Se concluye que todavía existe una brecha en la investigación de CI tanto a nivel nacional como internacional sobre el aprendizaje profundo y que los recursos de esta nueva estructura de programación pueden aproximarse a los métodos ya validados por el área.
URI: http://hdl.handle.net/10316/81300
ISSN: ISSN 1983-5213
Rights: openAccess
Appears in Collections:FLUC Secção de Informação - Artigos em Revistas Internacionais

Show full item record

Page view(s)

275
checked on Jul 7, 2020

Download(s)

206
checked on Jul 7, 2020

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons