Please use this identifier to cite or link to this item:
Title: Photocatalytic degradation of chlorophenols using Ru(bpy) 32+ /S2O 82-
Authors: Silva, M. 
Burrows, H. 
Formosinho, S. 
Alves, L. 
Godinho, A. 
Antunes, M. 
Ferreira, D. 
Issue Date: 2007
Citation: Environmental Chemistry Letters. 5:3 (2007) 143-149
Abstract: Abstract Advanced oxidation processes, such as photocatalysed oxidation, provide an important route for degradation of wastes. In this study, the lowest excited state (3MLCT) of Ru(bpy)32+ is used to break down chlorophenol pollutant molecules to harmless products. This has the advantage of using visible light and a short-lived catalytically active species. Photolysis of deaerated aqueous solutions of a variety of mono- and poly-substituted chlorophenols has been followed in the presence of Ru(bpy)32+/S2O82- with near visible light (? > 350 nm) by UV/visible absorption spectroscopy, luminescence, potentiometry, NMR and HPLC techniques. Upon irradiation, a decrease is observed in the chlorophenol concentration, accompanied by the formation of Cl-, H+ and SO42- ions as the main inorganic products. Benzoquinone, phenol, dihydroxybenzenes and chlorinated compounds were the dominant organic products. As the ruthenium(II) complex is regenerated in the reaction, the scheme corresponds to an overall catalytic process. The kinetics of the rapid chlorophenol photodechlorination has been studied, and are described quite well by pseudo-first order behaviour. Further studies on this were made by following Cl- release with respect to the initial Ru(bpy)32+ and S2O82- concentrations. A comparison is presented of the photodechlorination reactivity of the mono and polychlorophenols studied at acidic and alkaline pH.
DOI: 10.1007/s10311-007-0096-z
Rights: openAccess
Appears in Collections:FCTUC Química - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
obra.pdf406.99 kBAdobe PDFView/Open
Show full item record


checked on May 29, 2020

Citations 10

checked on Aug 2, 2022

Page view(s)

checked on Sep 16, 2022


checked on Sep 16, 2022

Google ScholarTM




Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.