Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/5245
Title: Nonlinear regression in parameter estimation from polarographic signals
Authors: Pais, A. A. C. C. 
Pereira, J. L. G. C. 
Redinha, J. S. 
Keywords: Least-squares; Monte-Carlo; Bootstrap; Jackknife; Parameter estimation; Polarography
Issue Date: 2000
Citation: Computers & Chemistry. 24:3-4 (2000) 533-539
Abstract: In this work we describe a detailed treatment of polarographic data curves, including error analysis, by means of nonlinear least-squares in its standard form (or resorting to the errors in variables model). Error estimates for the related parameters are additionally verified by Monte-Carlo simulation and resampling techniques.
URI: http://hdl.handle.net/10316/5245
Rights: openAccess
Appears in Collections:FCTUC Química - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
file7f861f9e36ed4b74884f34fa77a64c34.pdf113.76 kBAdobe PDFView/Open
Show full item record

Page view(s)

113
checked on Apr 1, 2020

Download(s)

78
checked on Apr 1, 2020

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.