Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/4658
DC FieldValueLanguage
dc.contributor.authorSantos, J.-
dc.contributor.authorOliveira, P. de-
dc.date.accessioned2008-09-01T11:36:02Z-
dc.date.available2008-09-01T11:36:02Z-
dc.date.issued1999en_US
dc.identifier.citationJournal of Computational and Applied Mathematics. 111:1-2 (1999) 239-251en_US
dc.identifier.urihttp://hdl.handle.net/10316/4658-
dc.description.abstractIn this paper we study convergence of numerical discretizations of hyperbolic nonhomogeneous scalar conservation laws. Particular attention is devoted to point source problems. Standard numerical methods, obtained by a direct discretization of the differential form, fail to converge, even in the linear case. We consider the equation in integral form in order to construct a class of convergent accurate methods. Numerical examples are included.en_US
dc.description.urihttp://www.sciencedirect.com/science/article/B6TYH-3YMFK8J-R/1/cbe49d4b91208a476f2e65596d793511en_US
dc.format.mimetypeaplication/PDFen
dc.language.isoengeng
dc.rightsopenAccesseng
dc.subjectHyperbolic conservation lawsen_US
dc.subjectSingular source termen_US
dc.subjectDirac delta functionsen_US
dc.subjectFinite volume methodsen_US
dc.subjectConservative numerical methodsen_US
dc.titleA converging finite volume scheme for hyperbolic conservation laws with source termsen_US
dc.typearticleen_US
item.languageiso639-1en-
item.grantfulltextopen-
item.fulltextCom Texto completo-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
file00b3e52fcb4545dea41593302c81a1b3.pdf134.01 kBAdobe PDFView/Open
Show simple item record

Page view(s) 20

474
checked on Oct 14, 2019

Download(s)

51
checked on Oct 14, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.