Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/43872
Title: Higher central extensions and cohomology
Authors: Rodelo, Diana 
Van der Linden, Tim 
Issue Date: 18-Feb-2015
Publisher: Elsevier
Project: info:eu-repo/grantAgreement/FCT/COMPETE/132981/PT 
Serial title, monograph or event: Advances in Mathematics
Volume: 287
Abstract: We establish a Galois-theoretic interpretation of cohomology in semi-abelian categories: cohomology with trivial coefficients classifies central extensions, also in arbitrarily high degrees. This allows us to obtain a duality, in a certain sense, between "internal" homology and "external" cohomology in semi-abelian categories. These results depend on a geometric viewpoint of the concept of a higher central extension, as well as the algebraic one in terms of commutators.
URI: http://hdl.handle.net/10316/43872
Other Identifiers: 10.1016/j.aim.2015.09.023
DOI: 10.1016/j.aim.2015.09.023
Rights: embargoedAccess
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat Login
hceac (formato article).pdf854.82 kBAdobe PDFEmbargo Access    Request a copy
Show full item record

SCOPUSTM   
Citations

3
checked on Jun 25, 2019

WEB OF SCIENCETM
Citations

4
checked on Jun 25, 2019

Page view(s) 5

1,470
checked on Sep 18, 2019

Download(s)

26
checked on Sep 18, 2019

Google ScholarTM

Check

Altmetric

Dimensions


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.