Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/42051
DC FieldValueLanguage
dc.contributor.authorRodrigues, Eugénio-
dc.contributor.authorSousa-Rodrigues, David-
dc.contributor.authorTeixeira de Sampayo, Mafalda-
dc.contributor.authorGaspar, Adélio Rodrigues-
dc.contributor.authorGomes, Álvaro-
dc.contributor.authorHenggeler Antunes, Carlos-
dc.date.accessioned2017-06-21T14:52:23Z-
dc.date.available2017-06-21T14:52:23Z-
dc.date.issued2017-08-
dc.identifier10.1016/j.autcon.2017.03.017-
dc.identifier.issn0926-5805por
dc.identifier.urihttp://hdl.handle.net/10316/42051-
dc.description.abstractGenerative design methods are able to produce a large number of potential solutions of architectural floor plans, which may be overwhelming for the decision-maker to cope with. Therefore, it is important to develop tools which organise the generated data in a meaningful manner. In this study, a comparative analysis of four architectural shape representations for the task of unsupervised clustering is presented. Three of the four shape representations are the Point Distance, Turning Function, and Grid-Based model approaches, which are based on known descriptors. The fourth proposed representation, Tangent Distance, calculates the distances of the contour's tangents to the shape's geometric centre. A hierarchical agglomerative clustering algorithm is used to cluster a synthetic dataset of 72 floor plans. When compared to a reference clustering, despite good perceptual results with the use of the Point Distance and Turning Function representations, the Tangent Distance descriptor (Rand index of 0.873) provides the best results. The Grid-Based descriptor presents the worst results.por
dc.language.isoengpor
dc.publisherElsevierpor
dc.relationRen4EEnIEQ (PTDC/EMS-ENE/3238/2014, POCI-01-0145-FEDER-016760, LISBOA-01-0145-FEDER-016760)por
dc.rightsopenAccesspor
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/por
dc.subjectUnsupervised clusteringpor
dc.subjectFloor plan designspor
dc.subjectHierarchical clusteringpor
dc.subjectShape representationpor
dc.subjectDescriptorspor
dc.titleClustering of architectural floor plans: A comparison of shape representationspor
dc.typearticle-
degois.publication.firstPage48por
degois.publication.lastPage65por
degois.publication.titleAutomation in Constructionpor
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0926580517302601por
dc.peerreviewedyespor
dc.identifier.doi10.1016/j.autcon.2017.03.017por
degois.publication.volume80por
item.languageiso639-1en-
item.fulltextCom Texto completo-
item.grantfulltextopen-
crisitem.author.deptFaculdade de Ciências e Tecnologia, Universidade de Coimbra-
crisitem.author.parentdeptUniversidade de Coimbra-
crisitem.author.researchunitInstitute for Systems Engineering and Computers at Coimbra-
crisitem.author.orcid0000-0003-4754-2168-
Appears in Collections:FCTUC Eng.Mecânica - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
Rodrigues et al - 2017 - Clustering of architectural floor plans_a comparison of shape representations.pdfInternational Journal Article5.85 MBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

1
checked on Jun 25, 2019

WEB OF SCIENCETM
Citations

1
checked on Jun 25, 2019

Page view(s) 50

323
checked on Aug 21, 2019

Download(s) 50

354
checked on Aug 21, 2019

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons