Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/40920
Title: Role of aquaporin-4 in methamphetamine-induced blood-brain barrier dysfunction and cerebral edema formation
Other Titles: Papel da aquaporina 4 na disfunção da barreira hematoencefálica e na formação do edema cerebral induzidos pela metanfetamina
Authors: Leitão, Ricardo Alexandre Gomes 
Orientador: Silva, Ana Paula
Keywords: Animal behavior; Aquaporina-4; Tumor necrosis factor-alpha; Parthenolide; Neuroinflammation; Methamphetamine; Brain edema; Blood–brain barrier; Astrocytes; Aquaporin-4; Partenolídeo; Neuroinflamação; Metanfetamina; Fator de necrose tumoral alfa; Edema cerebral; Comportamento animal; Barreira hematoencefálica; Astrócitos
Issue Date: 17-Oct-2017
Citation: LEITÃO, Ricardo Alexandre Gomes - Role of aquaporin-4 in methamphetamine-induced blood-brain barrier dysfunction and cerebral edema formation. Coimbra : [s.n.], 2017. Tese de doutoramento. Disponível na WWW: http://hdl.handle.net/10316/40920
Project: info:eu-repo/grantAgreement/FCT/SFRH/SFRH/BD/84408/2012/PT 
Abstract: Methamphetamine (METH) is a powerful psychostimulant drug of abuse that has gained worldwide popularity, and its use originates severe health problems. Despite extensive characterization of METH-induced neurotoxicity over the last years, many questions remain unanswered. Several reports have demonstrated that oxidative stress, mitochondrial dysfunction, and neuroinflammation are some of the neurotoxic features of METH. More recently, it was shown that METH compromises the blood-brain barrier (BBB) and causes a disturbance in the water homeostasis leading to brain edema. Additionally, it is well known that astrocytes play a crucial role in modulating BBB structure and function, as well as in regulating brain water content. However, the effect of METH on the crosstalk between brain endothelial cells (ECs) and astrocytes has never been addressed before. Also, water fluxes that take place between the different compartments of the brain, and between brain parenchyma and the blood are highly controlled. Thus, disturbances in this well-regulated homeostasis cause brain edema, which will have deleterious effects on brain function. Importantly, the water transport at BBB is regulated by water channels, aquaporins (AQPs), and AQP4 is the most important at the Central Nervous System, being express on astrocytic endfeet in contact with brain vessels. Brain edema is a hallmark of several neuropathologies, and METH consumption is not an exception. Yet, to date, nothing is known about the role of AQP4 under METH conditions. Furthermore, AQP4 has two isoforms, M1 and M23, and the ratio M1/M23 regulates water homeostasis since M23 stabilizes the channel function but M1 disrupts the AQP4 structure. Taking into consideration all the gaps in this field, it is urgent to clarify the role of AQP4 in METH-induced BBB dysfunction and brain edema formation. The present thesis is divided into 5 chapters. In chapter 1 is presented a review of the literature about the different themes that were explored in the laboratory and detailed in the following chapters. In chapter 2, the impact of METH on astrocytes-ECs crosstalk was investigated with a particular interest in the role of tumor necrosis factor alpha (TNF-α). After observing that METH increased TNF-α released by both astrocytes and ECs, it was also proved that this proinflammatory cytokine was responsible for endothelial permeability through the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. These in vitro results were corroborated by animal studies showing an increase of BBB permeability and TNF-α levels in the mice striatum, which was prevented by NF-κB pathway blockade. Overall, it was shown that TNF-α/NF-κB signaling pathway has a key role in METH-induced BBB dysfunction. Next, in chapter 3, it was investigated the direct effect of METH on AQP4 system concluding that METH, besides BBB dysfunction, is also able to induce a cytotoxic brain edema and depressive-like behavior. Curiously, AQP4 was shown to have a predominant role of such alterations since its inhibition prevented all the effects observed in mice. Moreover, AQP4 via reactive oxygen species (ROS) production was involved in cell swelling and altered astrocyte morphology triggered by METH since AQP4 knockdown or its pharmacological blockade, as well as an antioxidant treatment (namely vitamin C) were able to prevent METH effects in astrocytes. In conclusion, AQP4 was identified as a new target against METH-induced neurogliovascular dysfunction and depressive-like behavior. Following the results observed in chapter 2 and 3, a new strategy to counteract the negative effects of METH was applied by using a natural flower product. Thus, in chapter 4, it was proved that parthenolide (PTL), a feverfew plant extract, has an anti-inflammatory role and prevented METH-induced BBB permeability and brain edema. Additionally, TNF-α via activation of its receptor 1 (TNFR1) was involved in astrocytic swelling induced by METH. In sum, PTL plays a beneficial role against neuroinflammation and neurogliovascular dysfunction triggered by METH. Finally, in chapter 5, a general discussion is presented. Overall, the present work shows that METH interferes with brain water homeostasis and BBB function, culminating in behavioral abnormalities. Moreover, both neuroinflammation and oxidative stress are involved in such negative effects of METH, and new strategies to counteract these deleterious consequences were identified, such as AQP4 blockade and the use of PTL.
A metanfetamina (MET) é uma droga de abuso muito viciante com grande popularidade mundial, e que causa sérios problemas de saúde. Apesar da extensa caracterização da sua neurotoxicidade nos últimos anos, muitas questões continuam sem resposta. Alguns estudos têm mostrado que o stresse oxidativo, a disfunção mitocondrial e a neuroinflamação são alguns dos efeitos nefastos da MET. Mais recentemente demonstrou-se que a MET interfere com a função normal da barreira hematoencefálica (BHE), causando alterações na homeostase da água o que pode levar a uma situação de edema cerebral. Para além disso, sabe-se também que os astrócitos têm um papel muito importante na modulação da estrutura e função da BHE, bem como na regulação do conteúdo de água cerebral. No entanto, o efeito da MET na comunicação entre as células endoteliais (CEs) e os astrócitos nunca foi estudado anteriormente. Por outro lado, o movimento de moléculas de água entre os diferentes compartimentos do cérebro e entre o parênquima cerebral e a corrente sanguínea ocorre de forma controlada. Assim, distúrbios nesta homeostase irão causar uma situação de edema, o qual terá um impacto negativo na função cerebral. O transporte de água na BHE é regulado por canais de água, denominados aquaporinas (AQPs), sendo que a AQP4 é a mais importante no Sistema Nervoso Central, e encontra-se expressa nas terminações dos astrócitos que contactam com os vasos cerebrais. De facto, o edema cerebral ocorre em muitas neuropatologias, e o consumo de MET não é exceção. No entanto, o papel da AQP4 nos efeitos da MET é ainda desconhecido. Além disso, a AQP4 tem duas isoformas, a M1 e a M23, e é a sua proporção que regula a homeostase da água, uma vez que a presença da isoforma M23 estabiliza a função do canal de água enquanto a isoforma M1 causa alterações na função da AQP4. Deste modo, é importante esclarecer o papel da AQP 4 na disfunção da barreira hematoencefálica e na formação do edema cerebral induzidos por MET. A presente tese está dividida em 5 capítulos. No capítulo 1 é apresentada uma revisão da literatura sobre os diversos temas estudados no laboratório e detalhados nos capítulos seguintes. No capítulo 2 investigou-se o efeito da MET na comunicação entre astrócitos e CEs com particular interesse no papel do fator de necrose tumoral alfa (TNF-α). Depois de mostrar um aumento da libertação de TNF-α induzido por MET, quer pelos astrócitos quer pelas CEs, provou-se que esta citocina pró-inflamatória estava envolvida no aumento da permeabilidade das CEs através da ativação da via de sinalização do fator nuclear kappa B (NF-κB). Estes resultados foram corroborados por estudos em animais onde se observou um aumento da permeabilidade da BHE e dos níveis de TNF-α no estriado de murganho, efeitos estes que foram prevenidos pelo bloqueio da via do NF-κB. Deste modo, conclui-se que a via de sinalização do TNF-α/NF-κB está envolvida na disfunção da BHE induzida por MET. De seguida, no capítulo 3 avaliou-se o impacto direto da MET no sistema da AQP4 e foi possível demonstrar que esta droga de abuso, para além de induzir uma disfunção da BHE, também originou um edema cerebral citotóxico e comportamento do tipo depressivo. Curiosamente, a AQP4 teve um papel predominante nestas alterações já que o seu bloqueio preveniu todos os efeitos observados nos murganhos. In vitro foi também possível comprovar o papel importante da AQP4 via produção de espécies reactivas de oxigénio já que o silenciamento deste canal de água ou a sua inibição farmacológica, bem como a exposição a um antioxidante (vitamina C) preveniram as alterações morfológicas induzidas pela MET nos astrócitos. Em conclusão, a AQP4 foi identificada como um alvo importante para prevenir as alterações neurogliovasculares e comportamento depressivo induzidos por MET. Na sequência dos efeitos negativos da MET observados nos capítulos 2 e 3, colocou-se a hipótese de uma nova abordagem com um produto natural de origem vegetal. Deste modo, no capítulo 4 concluíu-se que o partenolídeo (PTL), um extrato obtido da artemísia dos prados (Tanacetum parthenium), tem um papel anti-inflamatório e preveniu o aumento da permeabilidade da BHE e formação de edema cerebral induzidos por MET. Mais ainda, foi possível demonstrar que o TNF-α, através da ativação do seu recetor TNFR1, estava envolvido no aumento de volume dos astrócitos observado na presença de MET. Assim, este trabalho permitiu concluir que o PTL tem um feito benéfico em condições de neuroinflamação e disfunção neurogliovascular induzidos por MET. Por último, o capítulo 5 inclui uma discussão geral sobre os resultados obtidos nos capítulos anteriores. Em conclusão, esta tese permitiu mostrar que a MET interfere não só com a homeostase da água no cérebro, mas também com a função da BHE, e que estes efeitos podem conduzir a alterações comportamentais. Para além disso, demonstrou-se ainda que a neuroinflamação e o stresse oxidativo estão subjacentes aos efeitos negativos causados pela MET e foram identificadas duas abordagens para prevenir estes efeitos, tais como o bloqueio da AQP4 e o uso do partenolídeo.
Description: Tese de doutoramento em Engenharia Biomédica, apresentada à Faculdade de Ciências e Tecnologia da Universidade de Coimbra
URI: http://hdl.handle.net/10316/40920
Rights: embargoedAccess (1 year)
Appears in Collections:FCTUC Ciências da Vida - Teses de Doutoramento

Files in This Item:
File Description SizeFormat 
Role of aquaporin4 .pdf7.38 MBAdobe PDFView/Open
Show full item record

Page view(s) 20

437
checked on May 15, 2019

Download(s) 10

1,462
checked on May 15, 2019

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons