Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/36684
Title: A moderate deviation for associated random variables
Authors: Çaǧın, Tonguç 
Oliveira, Paulo Eduardo 
Torrado, Nuria 
Keywords: Moderate deviation; Association; Coupliing; Approximation
Issue Date: 2016
Publisher: Elsevier
Keywords: Moderate deviation; Association; Coupliing; Approximation
Issue Date: 2016
Publisher: Elsevier
Project: info:eu-repo/grantAgreement/FCT/5876/147205/PT 
SFRH/BPD/91832/2012. 
Abstract: Moderate deviations are an important topic in many theoretical or applied statistical areas. We prove two versions of a moderate deviation for associated and strictly stationary random variables with finite moments of order q > 2. The first one uses an assumption depending on the rate of a Gaussian approximation, while the second one discusses more natural assumptions to obtain the approximation rate. The control of the dependence structure relies on the decay rate of the covariances, for which we assume a relatively mild polynomial decay rate. The proof combines a coupling argument together with a suitable use of Berry–Esséen bounds.
URI: http://hdl.handle.net/10316/36684
Other Identifiers: 10.1016/j.jkss.2015.11.004
DOI: 10.1016/j.jkss.2015.11.004
Rights: embargoedAccess
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
moderate_els_rev4.pdf332.77 kBAdobe PDFView/Open
Show full item record

WEB OF SCIENCETM
Citations

2
checked on Jun 25, 2019

Page view(s) 20

456
checked on Aug 21, 2019

Download(s)

82
checked on Aug 21, 2019

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.