Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/13697
Title: Local Hölder continuity for doubly nonlinear parabolic equations
Authors: Kuusi, Tuomo 
Siljander, Juhana 
Urbano, José Miguel 
Keywords: Hölder continuity; Caccioppoli estimates; Intrinsic scaling; Harnack's inequality
Issue Date: 2010
Publisher: Centro de Matemática da Universidade de Coimbra
Keywords: Hölder continuity; Caccioppoli estimates; Intrinsic scaling; Harnack's inequality
Issue Date: 2010
Publisher: Centro de Matemática da Universidade de Coimbra
Citation: Pré-Publicações DMUC. 10-19 (2010)
Abstract: We give a proof of the Hölder continuity of weak solutions of certain degenerate doubly nonlinear parabolic equations in measure spaces. We only assume the measure to be a doubling non-trivial Borel measure which supports a Poincaré inequality. The proof discriminates between large scales, for which a Harnack inequality is used, and small scales, that require intrinsic scaling methods.
URI: http://hdl.handle.net/10316/13697
Rights: openAccess
Appears in Collections:FCTUC Matemática - Vários

Files in This Item:
File Description SizeFormat
Local Holder continuity.pdf238.3 kBAdobe PDFView/Open
Show full item record

Page view(s) 20

514
checked on Aug 20, 2019

Download(s) 20

503
checked on Aug 20, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.