Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/11419
Title: The globals of pseudovarieties of ordered semigroups containing B2 and an application to a problem proposed by Pin
Authors: Almeida, J. 
Escada, A. 
Keywords: Semigroup; Pseudovariety; Semigroupoid; pseudoidentity; Dot-depth; Concatenation hierarchies
Issue Date: 2004
Publisher: Centro de Matemática da Universidade de Coimbra
Citation: Pré-Publicações DMUC. 04-12 (2004)
Abstract: Given a basis of pseudoidentities for a pseudovariety of ordered semigroups containing the 5-element aperiodic Brandt semigroup B2, under the natural order, it is shown that the same basis, over the most general graph over which it can be read, defines the global. This is used to show that the global of the level 3/2 of the refinement of Straubing-Th´erien’s concatenation hierarchy introduced by Pin and Weil has infinite vertex rank.
URI: http://hdl.handle.net/10316/11419
Rights: openAccess
Appears in Collections:FCTUC Matemática - Artigos em Revistas Nacionais

Files in This Item:
File Description SizeFormat
The globals of pseudovarieties of ordered semigroups containing B2.pdf297.49 kBAdobe PDFView/Open
Show full item record

Page view(s)

95
checked on Nov 18, 2019

Download(s)

53
checked on Nov 18, 2019

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.